
N91 - 20 037 o G
1990 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

ROBOT TRACKING SYSTEM IMPROVEMENTS AND VISUAL CALIBRATION

OF ORBITER POSITION FOR RADIATOR INSPECTION

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DMSION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. Gregory Tonkay

Assistant Professor

Lehigh University

Department of Industrial Engineering

Mechanical Engineering

Special Projects (RADL)

Mr. V. Leon Davis

July 3t, 1990

University of Central Florida

NASA-NGT-60002 Supplement: 4

462

ACKNOWLEDGEMENTS

J
v

I would like to thank NASA and ASEE for the chance to participate

in this program for a second year. My professional knowledge of

launch operations, shuttle support, and robot applications, has

increased greatly based on my interactions with the robotics group

at NASA and the employees of Boeing Aerospace Organization, the

engineering services contractor for the RADL. A special thanks to

Leon Davis, my NASA colleague for giving me the freedom to change

my emphasis as new and more interesting problems appeared.

_3

ABSTRACT

This report dealt with two separate topics: (i) improving a robotic
tracking system and (2) providing insights into orbiter position
calibration for radiator inspection, The objective of the tracking
system project was to provide the capability to track moving
targets more accurately by adjusting parameters in the control
system and implementing a predictive algorithm. A computer model
was developed to emulate the tracking system. Using this model as
a test bed, a self-tuning algorithm was developed to tune the
system gains. The model yielded important findings concerning
factors that affect the gains. The self-tuning algorithm will
provide the concepts to write a program to automatically tune the
gains in the real system.

The section concerning orbiter position calibration provided a
comparison to previous work that had been performed for plant
growth. It provided the conceptualized routines required to
visually determine the orbiter position and orientation.
Furthermore it identified the types of information which are
required to flow between the robot controller and the vision
system.

464

SUMMARY

The RADL (Robotics Application Development Laboratory) has been
working on the robotic tracking for several years. The application
of tracking is based on using a robot to mate and de-de-mate an
umbilical connection on the shuttle launch pad as it is swaying in
the breeze. The tracking system has many parameters which must be
set. Unfortunately, there are so many parameters that it has been
impossible to manually tune them. This project developed a model
of the tracking system and then implemented a self-tuning algorithm
to tune the variables in the model. With the success of the
program there is now incentive to apply the self-tuning algorithm
to the real tracking system. This paper describes the model and
self-tuning algorithm in detail.

The paper discusses types of error criteria and supports the use of
a combination of minimizing maximum deviation and mean absolute
deviation.

By observing the model self-tuning the control system, several
important discoveries were made or verified:

Target velocity affects the gains

Optimal gains could be negative for short trials

Length of tracking trials significantly changes the
optimal gains

Start up biases exist which affect gains

Error criteria affects gains

Next, the concepts required for the implementation of a predictive
algorithm are discussed. Several important issues are raised with
recommendations of how to proceed initially. Although no
experimental analysis was performed, it would be feasible to modify
the tracking model to give some insights into the questions.

Finally, a discussion is presented about the requirements for a
vision system attached to a robot to determine the position of the
orbiter. Two methods of location determination are discussed:
triangulation and analysis of known features. The issues involved
in an interface protocol are also explored. Finally, a proposed
scenario is given for the orbiter orientation determination task.

\ /

465

Section

II

2.1

2.2

2.3

2.4

2.5

2.6

2.7

III

3.1

3.2

3.3

IV

4.1

4.2

4.3

4.4

4.5

V

VI

TABLE OF CONTENTS

.Title

INTRODUCTION

ROBOTICS AT KENNEDY SPACE CENTER

OBJECTIVE OF THIS RESEARCH PROJECT

IMPROVEMENT IN TARGET TRACKING PERFORMANCE

DESCRIPTION OF TRACKING SYSTEM

SOFTWARE PID CONTROL LOOP

PROBLEMS TUNING THE PID LOOP

MODEL OF TRACKING SYSTEM

OUTPUT FROM THE TRACKING SYSTEM MODEL

SELF-TUNING ALGORITHM

RESULTS OF SAMPLE TRIALS

PREDICTIVE ALGORITHM

PREDICTIVE EQUATIONS

PREVIOUS ATTEMPT AT A PREDICTIVE ALGORITHM

PROPOSED IMPLEMENTATION OF THE PREDICTIVE ALGORITHM

VISUAL CALIBRATION OF ORBITER POSITION FOR RADIATOR

INSPECTION

RADIATOR INSPECTION ROBOT

PERCEPTICS VISION SYSTEM ROUTINES

FEATURES TO USE FOR ORIENTATION

PROPOSED SCENARIO

INFORMATION EXCHANGE BETWEEN COMPUTERS

CONCLUSIONS

REFERENCES

V

LIST OF ILLUSTRATIONS

rv

Figure

2-1

2-2

2-3

2-4

2-5

2-6

Title

Tracking System Hardware

Tracking Simulation with no PID control for 48 seconds

Tracking System with High Gains Causes Oscillations

Final Solution for 48 Second Trial at 2 ips When

Optimizing Maximum Error with Start Up Bias

Final Solution for 48 Second Trial at 4 ips When

Optimizing Maximum Error with Start Up Bias

Final Solution for 48 Second Trial at 2 ips When

optimizing Mean Average Error with Start Up
Bias

Solution Showing Instability with a Negative

Integral Gain Tracking for 248 Seconds

Final Solution for 248 Second Trial at 2 ips When

Optimizing Maximum Error with No Start Up Bias

467

I INTRODUCTION

I.i ROBOTICSAT KENNEDYSPACE CENTER

The mission of Kennedy Space Center is to provide manpower and
support for fast, efficient and safe preparation of launch
vehicles. Robotics can be a key ingredient to satisfy this

mission. Many of the operations performed at Kennedy Space Center

are dangerous or repetitive which make them ideal candidates for

robots. The design and servicing procedures of present space

vehicles and launch procedures make it difficult to implement

robotics. However, the next generation spacecraft will most

assuredly be designed with robots in mind. This requires KSC

personnel to have familiarity with robots and related hardware such

as sensors and control systems. The RADL (Robotics Applications

Development Laboratory) provides this experience to NASA and its

contractors.

1.2 OBJECTIVE OF THIS RESEARCH PROJECT

The objective of this research project was to assist NASA personnel

in two separate areas: I) target tracking and 2) radiator

inspection. The body of this report will be divided into two

parts, each describing the background and results of one project.

The objective of the target tracking project was to provide the
Capability to track moving targets more accurately. The physical

tracking problem is a robot tracking the movements of the external

tank of a shuttle on the pad so that an umbilical connection can be

mated. Success has been achieved at tracking targets and mating

umbilical connections when moving several inches per second. The

recommendations _n this report should provide the capability to

track faster targets with greater accuracy using two separate

methods. The first method was to write a computer program to self- iz

tune the software PID ioop found in the computer generating the

system moves. This PID loop will be described in more detail

later. The second method was to recommend implementation

procedures for a predictive algorithm to predict the position of

the target.

The radiator inspection project involves a robot being designed to

inspect the radiators on the inside of the cargo bay doors of each

orbiter. This robot will travel on a 67 foot track to provide

coverage for all the radiator panels. Since the orbiter is parked

in a slightly different position each time it enters the OPF, a

calibration must be performed to determine the position of the

orbiter and the radiator panels prior to inspection. This report

describes the procedure which should be used to determine the

orientation of the radiator panels.

468

II IMPROVEMENTIN TARGETTRACKING PERFORMANCE

2.1 DESCRIPTION OF TRACKING SYSTEM

A block diagram of the target tracking system is shown in Figure
2-1. The major components in this system are an ASEA IRB-90 robot,
a MicroVax computer, and a DataCube vision system. The camera for
the vision system is mounted on the end effector of the robot. The
entire system can be thought of as a control loop. The vision
system takes a picture of the target. From this picture it can
calculate the relative error in inches (units used by vision
system) between the camera and the target. This error is converted
to millimeters (units used by the robot) and fed to the MicroVax
computer at the approximate rate of 30 error vectors per second.
Two buffers are maintained in the vision system. One always
contains a completed picture ready for transfer, while the other is
processing a picture [I].

In the MicroVax computer, the error vector is fed into a software
PID loop. The purpose of this loop is to allow fine-tuning of the
system moves. The PID loop outputs the coordinates for a relative
move to be executed by the robot. After the relative move
coordinates are determined from the PID loop, the absolute move
coordinates are calculated by summing the relative coordinates with
the previous absolute coordinates. Next the absolute coordinates
are converted to quaternions, the orientation notation system used
by the robot. Finally, the move command is sent to the robot for
execution. Because the communication link between the robot and
the MicroVax is slow (9600 baud), a new command is always
calculated and waiting in the robot controller for execution. This
leads to a problem of sending the robot to a position that is based
on data which is one move old and thus introduces a lag into the

system. This is an area for improvement and will be discussed in

more detail later in this report.

When the robot finishes executing a command, it sends an

acknowledgement to the MicroVax and immediately starts executing

the next instruction which is already in its buffer. When the

MicroVax receives the acknowledgment of the previous move command,
it calculates the next move command and sends it to the robot

communications buffer. In this way, the next command will already

be available for execution and the tracking system will not

experience delays due to communications.

2.2 SOFTWARE PID CONTROL LOOP

As stated previously, the purpose of the software PID loop is to
transform an error into relative move coordinates for the robot to

execute. By properly setting the gains in the PID loop, the

_9

VAX

Vision

System

Error

Target amera

Simulated

PID Loop
Conversions

ASEA
Controller

Robot

Figure 2-1. Tracking System Hardware

470

response of the plant (robot) can be substantially increased.

There are two equations which represent the integral and derivative

aspects of the PID controller, Equations (i) and (2) respectively.

A third equation, Equation (3), provides the output of the PID

loop.

ii.ii__ +ei,T v (1)

Di_z+K4(ei-es_)
Ds- z +T.

(2)

A p-Tz* (K_ *ei+Ki*Ii+Kd*Di) (3)

where:

I_ = integral error at time i

D, = derivative error at time i

e, = most recent calculated error by vision system at time i

K, = proportional gain

K, = integral gain

K, = derivative gain

K 4 = exponential weighting factor in the derivative equation

AP = delta move coordinates for the robot from PID loop

The equations above represent a single axis of the system. There

are actually 6 sets of equations as represented above corresponding

to X, Y, Z, Roll, Pitch, and Yaw. The 18 equations have a total of

24 gain constants.

2.3 PROBLEMS TUNING THE PID LOOP

Tuning the software PID loop presents several problems. First, the

optimal gain values depend on the operating parameters of the

system, such as target velocity, pattern of target motion, time

between vision updates, time between robot moves, maximum robot

velocity, and robot acceleration. These parameters are subject to

constant change as the system is upgraded. It would take a long

time to optimally tune the PID loop manually, at least one man-

week. Even if the PID loop were tuned, changing a single operating

parameter would require the loop to be re-tuned. These problems

necessitate an automatic method to tune the loop.

2.4 MODEL OF TRACKING SYSTEM

To develop an automatic method to tune the loop, valuable system

time and manpower would be required during development, debugging,

and testing. Therefore, a computerized model was developed to

471

approximate the tracking system. By writing a program to self-tune
the PID loop in this model before implementing it on the actual
system, time and money w0uld be saved, Furthermore, the tracking
model could provide a graphicai platform to expiain the system and
test hypotheses.

Several assumptions/limitations were made in order to reduce the
complexity of the model. However, the operating principles of the
actual system were used wherever possible. The first and greatest
limitation is that of only modeling one axis of motion. Since the
real-life target to be tracked is a shuttle on the pad blowing in
the breeze, it is assumed that the major motion will be along one
axis. Specifically, past research projects have dealt with a
motion of i0 inches in the X direction, and 3/4 inch in the Y and
Z directions. The same principles used to tune the single axis in
this model could be used to tune all of the axes in the actual
controller.

The second assumption is that the motion will be sinusoidal with

time. The velocity will be at a minimum at the extremes of motion

and a maximum through the mid-point. It should be noted that any

pattern of motion could be simulated just by changing the motion

generating function for the target.

The third assumption is that the robot controller is assumed to be

perfect. No overshoot or instabilities result from the controller.

While this may sound like a major limitation, it is believed that

the time lags in the other systems cause instabilities which are

orders of magnitude greater than those caused by the robot

controller. The robot controller was modelled to ramp up to its

required velocity at a given rate of acceleration. Furthermore, a

variable was included to provide a delay between execution of robot

commands. This would simulate the robot controller reading and

setting up for the next move. The controller was also modeled to
have an internal move buffer.

The fourth assumption is that there is no error in the vision

system calculations. A possible way to model this error is to add

a small random error to each calculation. The vision system was

modeled with two buffers. When a robot move must be generated, the

completed buffer is used even though the data in the buffer is

already old.

Some thought was given to selecting a criteria for judging one set

of gains against another. In the final program, the user must

select one of the following three criteria:

Mean Absolute Error - This measure treats all errors as equal

and attempts to minimize the mean. Arguments could be made

against this measure because one extremely large error could

472

be enough to shutdown the tracking system. However the effect

of one large error on the overall mean would be insignificant.

Root Mean Square Error - This measure tends to magnify the

larger errors (squares the error) and hence solves some of the

problems of Mean Absolute Error. However, the effect on the

mean of a single large error might still be insignificant.

Maximum Absolute Error - This measure records the largest

error in the trial but disregards the other errors.

Statistically, it is better to use a measure that uses more of

the data. However, for the tracking problem, this is a

reasonable criteria. Note that in reality a user might be

willing to sacrifice a little maximum error in exchange for

better mean square error.

Another possible criteria would be a weighted function including
terms for the maximum absolute error and the mean absolute error

(or root mean square error). This would allow the user to use both

measures to choose the optimal gains. Yet another possibility

would be to minimize the mean absolute error subject to maintaining

the maximum absolute error below some value. For example, if the

system could track as long as theerror was less than 3 inches, the

optimizing routine could minimize the mean absolute error in trials

which keep the absolute error less than 3 inches. These last two

optimization criteria were not included in the tracking system

model. They are mentioned as possible candidates for further work.

There are many variables which the user can change in the model.

The most typically changed variables are the 4 gain parameters from

Equations (I), (2), and (3), the speed of the target, the maximum

velocity and acceleration of the robot, and the amplitude of target

motion. Other variables can be changed to perform what-if

scenarios. For example, "what would happen if the robot position

could be updated 20 times per second instead of 7" or "what would

happen if the buffer in the robot were eliminated and the robot had

to wait to receive the move command before execution could start?"

There are many possible configuration changes that can be quickly

and easily tested.

2.5 OUTPUT FROM THE TRACKING SYSTEM MODEL

The model is programmed to graphically show the motion of the

target and the robot in time. Figure 2-2 is an example of the

tracking system with no PID loop to speed up the robot controller

(proportional gain equal to 1 with no derivative or integral gain).

Time is shown on the horizontal axis and position is shown on the

vertical axis. The error components, e,, I,, and D_ from the PID

loop, are shown on a second graph at the bottom.

473

p m *2°0000000
I = _'O.04MMM)O0

D = 40.0000000

_rm Tartar _lo_it_ (i_s)= tl.O00
Number of Iterations : 41.

PI_ l_era4_ Error = "_49.flZ_
Root 14klan |Qulrll Error ;..l.55.'J4,Jl
I'I,IXil.U.I4 Error : "l'li;I.'J'?2

Ooti_izing Naxi_ Error

""'.. _ .."./ ".,.._,: ,.... ," / ';,...,';...... .,

..." fl:_"7 ii :..."

'.,....-:':',':............... "..'.. ""',_............ " ". ii: -

"=" "':::::_:..<:;IY '"' " " " '*'.,.::.. ..;'.... ""._:::::_::,.,... "'<i'..

Figure 2-2. Tracking Simulation with no PID control for 48

seconds

As expected from experience, the robot lags the target because of

the buffers, delays, and inaccuracies in the system. As the gains

are increased, the robot iags iess. As the gains c6n£inue to

increase, eventually the robot will overshoot when the target slows

down and reverses direction. Some overshoot is acceptable, but

increasing the gains further can cause oscillation as shown in

Figure 2-3 and eventually system instability.

2.6 SELF-TUNING ALGORITHM

The system model as described above could be used to determine

which projects should be attempted first in order to receive

maximum payback in the form of increased tracking capability.

However, a major goal of this project was to write a computer

program to self-tune the gains in the PID loop. This was

accomplished faster by first modeling the tracking system as

described previously and then writing a self-tuning algorithm to

alter the gains in the model to optimize one of the measures of

performance. It also proved the concept before tying up expensive

robot and technician time. Now that the self-tuning concept has

been demonstrated, it can be implemented on the system hardware.

474

P = *-I1.0000000 15can Average Error : t2_J.4_O

.4.0000000_ Root Itoin lurt Error = _ll.(_ll14llxi_u_ Error = 471.9_?. /
D IkRilht = +|.00(0]1(]¢_
ll_llrigi Target Uol_itv (tPi)= -4.000
IqkJd3_r of | tlrl_ _(311Ji : tJ .

ODtinlzir_ Kmxi0,tun Error

; "-% " ,i _ _:. ," "_ °' 'L

:: f"_,"_"'.- '" : _-°"-"- d '-_4,-.,. ..-.,; %_...'_.. . : : ._-_._,_.-... ,'. " ,....'._.._-.._ , ; ;, ,.._-.,._ __;_:..._,.

Figure 2-3. Tracking System with High Gains Causes Oscillations

The approach used to self-tune the PID loop was a response surface,

hill-climbing technique. If there were only two gains, the

response surface would look like a mountain. The elevation, or Z

axis, would be analogous to the optimization criteria. The two

gains would be analogous to longitude and latitude coordinates, or

X and Y axes. As the gains, or X and Y coordinates, are changed,

the mountain climber will either ascend, descend, or stay at the

same altitude. There are several hill climbing techniques that

could be used to reach the top of the mountain. In the coded

algorithm there are actually 4 gains to be changed rather than 2,

but the concept is still the same.

The method implemented in the model is the "method of steepest

ascent." The tracking error is known for the gains set at their

current values. Then one at a time, each gain is incremented a

certain amount while the other gains remain at their original

values. If for any gain the error gets worse, the gain is

decremented instead of incremented and another error calculation is

performed. Thus with 4 gains, a minimum of 4 trials and a maximum

of 8 trials are performed before the new gain values are selected.

The new gain values will be the ones used in the trial which

produced the greatest reduction in error.

475

One further refinement added to the algorithm was to adjust the

increments added to the gains so that a course search was

conducted. Once the gains were tuned with the large _n6rements_

smaller increments were used to refine the gains. Finally, even

smaller increments were used to attempt to reach the pinnacle of

the summit. Trials have shown that depending on the increments

that are specified for the trials, it could take several hundred
iterations to achieve a final solution.

In order for this coded algorithm to work with the tracking system
instead of the simulation, a function must be defined which takes

as its inputs the four gain values, runs the tracking system, and

returns a value representing the measure of error. In addition,

other modifications might be required in the tracking system for

automatic operation.

Because the hill climbing technique is a heuristic, it may find a

local optimal solution instead of a global optimal solution. To

reduce this possibility, the algorithm could be run several times,

each with different starting gains. While this will not guarantee

a global optimal solution, it will increase the chances of finding

a global optimal.

2.7 RESULTS OF SAMPLE TRIALS

After running several trials and comparing the results, several
conclusions can be drawn.

Target Velocity is Significant. Changing the speed of target

motion will change the resulting optimal gains. Figures 2-4 and

2-5 show the self-tuning results for average target speeds of 2 and

4 ips, respectively. Note also that the tracking errors are

significantly worse with the target moving at 4 ips, almost twice
as bad.

Length of Trackinq Trials is Siqnificant. The length of the

tracking trials could significantly affect the selected gains. For

short tracking trials the gains could be set such that the system

is slightly unstable. This would not be noticeable unless longer

trials were performed with the same gains. Figure 2-6 shows the

solution when the gains were tuned using 48 second trials. If

these same gains were specified in a trial that is 200 second as

shown in Figure 2-7, the system became unstable after about 70
seconds.

Optimal Gains Could Be Negative. Figure 2-5 shows that the

integral gain could be negative, depending on the tracking

conditions. The parameter most affecting the negative gains is the

time that the system tracks in each trial. For a system tracking

for long periods of time, the gains should never be negative.

476

Fic

P : ÷&.GG_XX)OO

! --_ ÷. IIOOG(X_O

D w _. 9;_OO(O)O

0 Mmtuht --- ÷_L.2040000

J_J_rm_lm Tsrlmt Oe|cx_Sty (iN)-" ÷Z.OOO
NkJ_bar of [tarmt iorm --- t9O.

RLmrm_m Er_mr --- ._.1,0.020

Root Iqmzm Sc_Jm_ Error --- 412.224
Na_lpecm Error -- _Z7.91_

oDtt_t_sn4m Iqm_l_u_ er_r

ure 2-4. Final Solution for 48 Second Trial at 2 ips When

Optimizing Maximum Error with Start Up Bias

Iqsmn l_ermqle Errer --- ÷18.342
Float Fiesta Sure Ermor -- _;_;_.l&_

hxt_us Error = *DO.|?3

m_ll4|Ztl%_ I'IIB_IN_,II_ i_r'rar

V Vk/k/V
•.: .. - -_- -. e _ * ._ -;- , '_; - .

Figure 2-5. Final Solution for 48 Second Trial at 4 ips When

Optimizing Maximum Error with Start Up Bias

477
ORIGINAL PAGE IS

OF POOR QUALITY

Iqean I_ueralt Error : _11.'_53
Root Itsan Sure Error : *_._00
l_aRxtnu_ Error = tZfl.lO8

opttNLzsrtll rsm_n _r_ _-rror

J

' /

Figure 2-6. Final Solution for 48 Second Trial at 2 ips When

Optimizing Mean Average Error with Start Up Bias

t -

_.. _ _'__ _ _-_ _ _ ._. _ _

igure 2-7. Solution Showing Instabillty with a
Integral Gain Tracking for 248 Seconds

Negative

478

OR1GII'_AL PAGE_ IS

OF POOR(_IAUTY

Start up Bias Exists. A start up bias exists which can

significantly affect the gains. It is most apparent in trials

which attempt to minzmize maximum error. A large error occurs at

the beginning of the trial while the system overcomes the lags.

This single source of error quickly becomes the maximum error. In

order to minimize maximum error, gains will be selected that reduce

the start up bias at the expense of the rest of the tracking cycle.

Figure 2-4 shows a trial with start up bias that tracks for 48

seconds. Figure 2-8 shows the same conditions except that tracking

P = e4.CIOO(N]130 _t i_a_r_ _rror : ill.TO5

D t_i_t = +,97&O000
A_er_ Tlrlmt qJei_itM (liml)= ti,llOO Ol_t_lzl_ PlllXllqUlt Error

Figure 2-8. Final Solution for 248 Second Trial at 2 ips When

Optimizing Maximum Error with No Start Up Bias

occurs for 248 seconds. The initial 200 seconds are not shown in

the figure and errors are disregarded during this period. The

results show a more stable system as the result of eliminating the

start up bias. Measures using mean error are not affected as much

by start up bias.

Optimization Criteria is Significant. The error criteria can play

a significant part in the selection of gains. Figures 2-4 and 2-6

show the same trials except for a difference in error criteria.

The difference will be more significant when the start up bias is

not eliminated.

ORIGINAL PAGE IS

OF POOR QUALITY

479

III PREDICTIVE ALGORITHM

The use of a predictive algorithm is another attempt to track more

accurately. If a certain type of motion is assumed, an algorithm

can be formulated to predict where the target will be at the next

robot move. However, if the motion significantly deviates from the

assumption, the system will track poorly.

3.1 PREDICTIVE EQUATIONS

The equations used to predict the target position should be based

on an assumed type of motion. This could include polynomial,

exponential, or sinusoidal. Polynomials offer an added advantage

of being quicker to calculate on the computer. In the case of

polynomials, the predicted value is based on previous values. The

number of previous values and the coefficients assigned to them can

vary depending on the type of motion. However, unless there is a

specific reason for doing otherwise, the coefficients should sum to

i. Examples of two equations derived by NASA and Boeing Aerospace

Organization (BAO) are:

(4

Xa._ = 5 1Xo-2Xo_ xo_
(5)

where:

X.. L is the predicted value 1 period in the future

X_ is the value at the present time

X,._ is the value 1 period in the past

Equations (4) and (5) should provide better response if the motion

is linear and quadratic, respectively. Further derivations could

be conducted for cubic motion. However, the increasing complexity

of the calculations often does not provide proportional increases

in prediction accuracy.

3.2 PREVIOUS ATTEMPT AT A PREDICTIVE ALGORITHM

A previous attempt was made to implement a predictive algorithm in

the vision system. This approach did not use information about the

robot or target position, velocity, and acceleration. Instead, it

only used the error information contained in the vision system.

Since the error information is dependent on both the target and

robot trajectories, it is impossible to predict target motion

without knowing something about the robot motion that produced the
previous errors.

V

480

F

Furthermore, the problem is compounded because the error reference

frame is continually shifting with the target and not constant with

respect to the world or the robot. By choosing to implement the

algorithms in a reference frame which is continually shifting, an

important implicit assumption was made:

If an error of "zero" occurs, the proper control strategy

is being used and tracking should continue at the same

velocity/acceleration to keep the robot on track. In

more general terms it could be stated that any prediction
about error that is made assumes that the current

trajectory of the robot will continue. The predicted

error is with respect to the current change in the

position of the reference frame.

This can be illustrated with an example. Suppose the target is

moving at a rate of 5 ips and the robot is tracking right on target

with a velocity of 5 ips (highly unlikely because of lags in the

System but okay for the purposes of illustration). Furthermore, it

has been correctly tracking for the last several points so all of

the past vision system errors are also "zero." With the current

implementation of the predictive algorithm, the next predicted
error would be "zero" and a command would be issued to the robot

not to move during the next time frame. However, the target would

continue to move and the robot wou!_ be left behind.

Ba%ed on the assumption listed above, what the robot should be

doing when the error is "zero" is to continue moving in the same

direction at the same velocity and acceleration. The reference

frame must continue to move as it was moved when the previous

errors were calculated. When the predicted error is "zero," it

means it will be zero if the current trajectory is maintained.

Therefore, a command should be issued to continue moving for the

next segment at the same velocity in the same direction. In this

example, the robot would be instructed to move at 5 ips and thus

stay exactly on target.

In the more general case, the robot should move to a point which is

the sum of the absolute position at the end of the current move

plus the previous incremental move (to maintain the moving

reference frame) plus the predicted error. A similar example could

be presented for the general case where the predicted error is not

"zero." However, to maintain brevity, it will be skipped at this

time.

From this discussion it should be clear that there is a problem

with the present implementation of the predictive algorithm. It

could probably be modified to make it workable. However, it

probably is not the best method of implementation.

481

3.3 PROPOSED IMPLEMENTATION OF THE PREDICTIVE ALGORITHM

There are several methods which could be used to properly implement

a predictive algorithm. However, it is not clear which is the

correct path to take for predictive algorithm implementation. It

is not clear whether the prediction should be made in the MicroVax

or in the vision system. Another important issue is where the

results should be applied. Should an additional move component be

calculated to sum to the robot position, or should the results of

the predictive algorithm be fed into the PID loop for processing?

Also, should the PID loop still remain in the tracking system?

Since the PID loop is, in a manner of speaking, also doing some

predictions, there is the possibility that the two will conflict.

There are many questions which need to be answered. To gain some

insight into these issues, the tracking model developed and

presented in the previous sections could be altered. This would

give the user some indication of the relative benefits of different

methods.

Parallel to the implementation issues is the issue of calculating

the prediction, The most straight forward approach is to determine

the target path by combining the robot position with the vision

system error. Thus, the predictive equations could be applied to

positions as opposed to errors. If errors are still required as

inputs to the PID loop, the calculated robot position at the end of

the current move could be subtracted from the predicted target

position to yield the predicted error, This should be the first

attempt at implementation. With the PID loop intact, the

controller will-have the capability to speed up the re§ponse_6f £he

robot, However, the gains will probably require tuning because the

error input will contain more information. If the system works
properly, the gains should be able to increase, which will result

in better response,

The predictive algorithm offers an opportunity for more accurate

tracking. However, it must be reiterated that the predictions are

based on an assumed type of target motion. If the target behaves

in a random manner or a manner significantly different from the

assumption, severely degraded performance could occur.

V

482

IV VISUAL CALIBRATION OF ORBITER POSITION FOR RADIATOR
INSPECTION

4.1 RADIATOR INSPECTION ROBOT

NASA is currently in the process of design and construction of a
robot to inspect the radiator panels on the orbiter. These panels
are located on the inside of the cargo bay doors. They are
inspected when the orbiter is pulled into the OPF and resting in
the horizontal position. The cargo bay doors are opened to expose
the radiator panels. Presently, the inspection occurs by workers
in a bucket moving over the surface. The surface is divided into
grids and defects are cataloged by location in the grid. Not all
defects are repaired. Many are noted for future inspection to see
if they are growing worse.

This is an ideal application for automated inspection. A robot is
being constructed to move lengthwise beside the orbiter on a long

track. It will be capable of inspecting the entire surface of the

radiator panels. The system will be able to divide the radiator

panels into smaller grids and thus provide better cataloging of

defects.

The visual inspection system requires 1/8 inch accuracy in the X,

Y, and Z direction. Therefore, the orientation of the orbiter will

have to be determined with an accuracy better than 1/8 inch. For

this part of the report, the task was to conceptually determine how

the orientation could be performed visually, whether the Perceptics

vision system in the RADL could perform the task, and what types of

communication would be required between the robot controller and

the vision processor.

4.2 PERCEPTICS VISION SYSTEM ROUTINES

The Perceptics vision system is a powerful high-level vision

processor that runs in parallel with a Macintosh computer. It can

act as a color system if the appropriate hardware is included.

Functions are available to snap pictures, perform thresholding,

blob analysis, and other complex vision calculations [2].

The system was used in a project that identified wheat heads and

moved the robot to point to them. While at first glance this seems

much different than the project at hand, it really is very similar.

A calculation must be performed to determine the position of the

wheat head with respect to the robot. This is exactly the same

task which must be used to determine the position of the orbiter.

Many routines were written in C to perform the vision tasks and

robot move tasks. Of particular interest are the routines to

v

483

determine the position of an object. There were two approaches to
this problem. The first and most accurate was to use 4 fiducial
points or dots arranged in a rectangle. By looking at these 4
points and using the vision system to measure the distance between
them, the system could determine the orientation of the 4 points
with 6 degrees of freedom. The accuracy achieved was about 1 mm

which is well within the accuracy requirements. However, this

method requires four dots to be laid out in a known rectangular

pattern [3].

The second method used to locate objects was one of triangulation.

Instead of a single picture as in the previous method, this method

required two pictures to be taken a known distance apart. The same

features must be located in each picture to determine the relative

motion in the picture compare to the actual motion of the camera.

This method provided accuracy that was barely acceptable in the

axes of the vision system. In the third axis, the distance from

the camera, the error exceeded that allowed for the system (5/32

inch error, 1/8 inch required accuracy). Better accuracy could be

achieved by spreading the views apart. However, the previously

described method would be preferred if implementable.

4.3 FEATURES TO USE FOR ORIENTATION

In order to determine the orientation of the orbiter, the position

of 3 points on the surface must be known. In order to achieve

maximum accuracy, the three points should be at the extreme ends of

the object. On the orbiter, this might be three corners at the far

extremes of the radiator panels. However, to achieve maximum

accuracy the method using fiducial points is preferred. The

corners of the panels do not offer this opportunity.

Another nearby feature is the set of bolts attaching the radiator

panels to the cargo bay doors. In two of the corners, this is a 3

bolt pattern. In the other two corners, this is a 4 bolt pattern.

By using these bolt holes and modified Perceptics vision system

routines, the orbiter position could be calculated. A 3 bolt

pattern will not provide a full 6 degree-of-freedom orientation

like a 4 bolt pattern. However, it is not required in this case.

By knowing the (X,Y,Z) position of 3 separate and known points on
the orbiter, orientation of the orbiter can be calculated in 6

degrees-of-freedom.

4.4 PROPOSED SCENARIO

The proposed scenario to determine the orientation is:

1) Move to the first location. This could be either

automatic or manual. The robot should be able to get

close enough to perform the task automatically, although

_g4

/
v

initially manually controlled joystick motion might be

preferred.

2) Take a picture and have the vision system send the

appropriate coordinates with respect to the robot TCP.

3) The robot controller should calculate the location of the

feature in OPF coordinates using the joint angles and

kinematic transformations for the robot.

4) Perform tasks 1 to 3 for each of the remaining two

features.

5) Determine the orientation of the orbiter using the robot

controller. Pass any required information to the vision

system performing the inspection.

4.5 INFORMATION EXCHANGE BETWEEN COMPUTERS

The communication link between the robot controller and the vision

calibration system should require little information transfer.

Since there are no processing speed requirements for the

orientation task, a serial link should prove satisfactory. The

robot controller should act as the master, issuing commands to the

vision processor and waiting for responses.

The robot controller should be able to issue commands to the vision

system to take pictures, process the pictures for specific

features, and return the coordinates of the feature. The robot

controller should also know the exact instant a picture is taken so

that it can record its joint values. This will eliminate the

problem of drift between the time the vision system takes the

picture and the robot controller processes the data. However, it

also requires that a single parallel signal be input to the robot

controller to identify when a picture is taken. The vision system

has no need to issue commands in this system.

485

V CONCLUSIONS

There were two distinctly different topics approached in this
research project. The purpose of the first part of this research
was to increase the tracking accuracy of a robotic tracking system.

Two methods were explored: tuning the parameters in the system and

implementing a predictive algorithm. A program was developed to

self-tune the gains in the system by a heuristic "hill climbing"

approach. The method implemented was the method of steepest

ascent. Each of 4 gains in the system was incremented or

decremented and the resulting reduction in error noted. The gain

providing the best reduction in error was changed and the entire

process was repeated until no further gain could be achieved.

To test this algorithm, a model of the tracking system was

deve3oped. This model included the lags inherent in the system due

to buffering. It also modeled the acceleration rates of the robot

controller. The model was used by itself and in conjunction with

the self-tuning algorithm to better understand the tracking system.

Several important conclusions were reported. The optimal gain

values were found to be dependent on many factors in the system

including the velocity of the target, the error criteria employed,

the length of a tracking trial, and start up biases. The model was

found to agree with most of the system responses observed by

technicians and engineers over several years of trials.

Criteria for errors were discussed and although no trials have been

performed, a measure was recommended for further study which

included both the maximum absolute error and the mean absolute

error. A possible implementation would be to use the maximum error

as a constraint while minimizing the mean error.

Issues were raised and discussed in the implementation of a

predictive algorithm. A previous attempt was discussed and the

error was pointed out. It was proposed that the target position

should be determined by summing the robot TCP position with the

vision system error recorded at the same time. Questions were

raised about where the predictive algorithm should be located and

whether the PID loop would still be required. A recommendation was

made to add these capabilities to the model to obtain some

knowledge about the decisions which are required.

In the second topic of this report, the use of a vision system to

determine the orientation of the orbiter in the OPF was discussed.

The task of radiator inspection was defined. Next, the use of the

Perceptics vision system located in the RADL was explored. Next,

a scenario was proposed to determine the orientation. Finally, the

communication between the robot controller and the vision system
was discussed.

V

486

r y

[1]

[2]

[3]

VI REFERENCES

Davis, Virgil Leon, "Systems Integration for the Kennedy Space

Center Robotics Applications Development Laboratory," MS87-

482 SME Technical Report, 1987.

User's Manual for the NuVision Imaqe Processing Workstation,

Perceptics Corporation, Knoxville, TN, 1989.

Myjak, Michael; Sklar, Mike; Tharpe, Roy; Thomas, Mark; and

Wegerif, Dan, Automated Plant Growth Development Project: FY89

Final Report, Advanced Technologies Branch of McDonnell

Douglas Space Systems Company, Kennedy Space Center, 1990.

\

487

